Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 32
1.
J Cell Biol ; 222(12)2023 12 04.
Article En | MEDLINE | ID: mdl-37796195

Cells harness multiple pathways to maintain lysosome integrity, a central homeostatic process. Damaged lysosomes can be repaired or targeted for degradation by lysophagy, a selective autophagy process involving ATG8/LC3. Here, we describe a parallel ATG8/LC3 response to lysosome damage, mechanistically distinct from lysophagy. Using a comprehensive series of biochemical, pharmacological, and genetic approaches, we show that lysosome damage induces non-canonical autophagy and Conjugation of ATG8s to Single Membranes (CASM). Following damage, ATG8s are rapidly and directly conjugated onto lysosome membranes, independently of ATG13/WIPI2, lipidating to PS (and PE), a molecular hallmark of CASM. Lysosome damage drives V-ATPase V0-V1 association, direct recruitment of ATG16L1 via its WD40-domain/K490A, and is sensitive to Salmonella SopF. Lysosome damage-induced CASM is associated with formation of dynamic, LC3A-positive tubules, and promotes robust LC3A engagement with ATG2, a lipid transfer protein central to lysosome repair. Together, our data identify direct ATG8 conjugation as a rapid response to lysosome damage, with important links to lipid transfer and dynamics.


Autophagy-Related Protein 8 Family , Autophagy , Lysosomes , Autophagy/genetics , Lysosomes/genetics , Lysosomes/metabolism , Macroautophagy/genetics , Microtubule-Associated Proteins/metabolism , Salmonella , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism
2.
Cell Death Dis ; 14(7): 436, 2023 07 15.
Article En | MEDLINE | ID: mdl-37454104

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common genetic cause of Parkinson's disease (PD), with growing importance also for Crohn's disease and cancer. LRRK2 is a large and complex protein possessing both GTPase and kinase activity. Moreover, LRRK2 activity and function can be influenced by its phosphorylation status. In this regard, many LRRK2 PD-associated mutants display decreased phosphorylation of the constitutive phosphorylation cluster S910/S935/S955/S973, but the role of these changes in phosphorylation status with respect to LRRK2 physiological functions remains unknown. Here, we propose that the S910/S935/S955/S973 phosphorylation sites act as key regulators of LRRK2-mediated autophagy under both basal and starvation conditions. We show that quadruple LRRK2 phosphomutant cells (4xSA; S910A/S935A/S955A/S973A) have impaired lysosomal functionality and fail to induce and proceed with autophagy during starvation. In contrast, treatment with the specific LRRK2 kinase inhibitors MLi-2 (100 nM) or PF-06447475 (150 nM), which also led to decreased LRRK2 phosphorylation of S910/S935/S955/S973, did not affect autophagy. In explanation, we demonstrate that the autophagy impairment due to the 4xSA LRRK2 phospho-dead mutant is driven by its enhanced LRRK2 kinase activity. We show mechanistically that this involves increased phosphorylation of LRRK2 downstream targets Rab8a and Rab10, as the autophagy impairment in 4xSA LRRK2 cells is counteracted by expression of phosphorylation-deficient mutants T72A Rab8a and T73A Rab10. Similarly, reduced autophagy and decreased LRRK2 phosphorylation at the constitutive sites were observed in cells expressing the pathological R1441C LRRK2 PD mutant, which also displays increased kinase activity. These data underscore the relation between LRRK2 phosphorylation at its constitutive sites and the importance of increased LRRK2 kinase activity in autophagy regulation and PD pathology.


Autophagy , rab GTP-Binding Proteins , Phosphorylation/physiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Mutation , Autophagy/genetics , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
3.
Blood Adv ; 7(7): 1190-1203, 2023 04 11.
Article En | MEDLINE | ID: mdl-36044386

Leukemia cells reciprocally interact with their surrounding bone marrow microenvironment (BMM), rendering it hospitable to leukemia cell survival, for instance through the release of small extracellular vesicles (sEVs). In contrast, we show here that BMM deficiency of pleckstrin homology domain family M member 1 (PLEKHM1), which serves as a hub between fusion and secretion of intracellular vesicles and is important for vesicular secretion in osteoclasts, accelerates murine BCR-ABL1+ B-cell acute lymphoblastic leukemia (B-ALL) via regulation of the cargo of sEVs released by BMM-derived mesenchymal stromal cells (MSCs). PLEKHM1-deficient MSCs and their sEVs carry increased amounts of syntenin and syndecan-1, resulting in a more immature B-cell phenotype and an increased number/function of leukemia-initiating cells (LICs) via focal adhesion kinase and AKT signaling in B-ALL cells. Ex vivo pretreatment of LICs with sEVs derived from PLEKHM1-deficient MSCs led to a strong trend toward acceleration of murine and human BCR-ABL1+ B-ALL. In turn, inflammatory mediators such as recombinant or B-ALL cell-derived tumor necrosis factor α or interleukin-1ß condition murine and human MSCs in vitro, decreasing PLEKHM1, while increasing syntenin and syndecan-1 in MSCs, thereby perpetuating the sEV-associated circuit. Consistently, human trephine biopsies of patients with B-ALL showed a reduced percentage of PLEKHM1+ MSCs. In summary, our data reveal an important role of BMM-derived sEVs for driving specifically BCR-ABL1+ B-ALL, possibly contributing to its worse prognosis compared with BCR-ABL1- B-ALL, and suggest that secretion of inflammatory cytokines by cancer cells in general may similarly modulate the tumor microenvironment.


Burkitt Lymphoma , Mesenchymal Stem Cells , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Syndecan-1/metabolism , Syntenins/metabolism , Cell Communication , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Burkitt Lymphoma/pathology , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment
4.
Autophagy Rep ; 2(1)2023 Dec 31.
Article En | MEDLINE | ID: mdl-38214012

The Atg8 family of ubiquitin-like proteins play pivotal roles in autophagy and other processes involving vesicle fusion and transport where the lysosome/vacuole is the end station. Nuclear roles of Atg8 proteins are also emerging. Here, we review the structural and functional features of Atg8 family proteins and their protein-protein interaction modes in model organisms such as yeast, Arabidopsis, C. elegans and Drosophila to humans. Although varying in number of homologs, from one in yeast to seven in humans, and more than ten in some plants, there is a strong evolutionary conservation of structural features and interaction modes. The most prominent interaction mode is between the LC3 interacting region (LIR), also called Atg8 interacting motif (AIM), binding to the LIR docking site (LDS) in Atg8 homologs. There are variants of these motifs like "half-LIRs" and helical LIRs. We discuss details of the binding modes and how selectivity is achieved as well as the role of multivalent LIR-LDS interactions in selective autophagy. A number of LIR-LDS interactions are known to be regulated by phosphorylation. New methods to predict LIR motifs in proteins have emerged that will aid in discovery and analyses. There are also other interaction surfaces than the LDS becoming known where we presently lack detailed structural information, like the N-terminal arm region and the UIM-docking site (UDS). More interaction modes are likely to be discovered in future studies.

5.
Proc Natl Acad Sci U S A ; 119(28): e2113465119, 2022 07 12.
Article En | MEDLINE | ID: mdl-35867735

The role of autophagy in cancer is complex. Both tumor-promoting and tumor-suppressive effects are reported, with tumor type, stage and specific genetic lesions dictating the role. This calls for analysis in models that best recapitulate each tumor type, from initiation to metastatic disease, to specifically understand the contribution of autophagy in each context. Here, we report the effects of deleting the essential autophagy gene Atg7 in a model of pancreatic ductal adenocarcinoma (PDAC), in which mutant KrasG12D and mutant Trp53172H are induced in adult tissue leading to metastatic PDAC. This revealed that Atg7 loss in the presence of KrasG12D/+ and Trp53172H/+ was tumor promoting, similar to previous observations in tumors driven by embryonic KrasG12D/+ and deletion of Trp53. However, Atg7 hemizygosity also enhanced tumor initiation and progression, even though this did not ablate autophagy. Moreover, despite this enhanced progression, fewer Atg7 hemizygous mice had metastases compared with animals wild type for this allele, indicating that ATG7 is a promoter of metastasis. We show, in addition, that Atg7+/- tumors have comparatively lower levels of succinate, and that cells derived from Atg7+/- tumors are also less invasive than those from Atg7+/+ tumors. This effect on invasion can be rescued by ectopic expression of Atg7 in Atg7+/- cells, without affecting the autophagic capacity of the cells, or by treatment with a cell-permeable analog of succinate. These findings therefore show that ATG7 has roles in invasion and metastasis that are not related to the role of the protein in the regulation of autophagy.


Autophagy-Related Protein 7 , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Animals , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/secondary , Cell Line, Tumor , Mice , Mutation , Neoplasm Invasiveness , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Succinates/metabolism , Succinates/pharmacology
6.
FEBS J ; 289(13): 3752-3769, 2022 07.
Article En | MEDLINE | ID: mdl-35060334

Macroautophagy is a membrane-trafficking process that delivers cytoplasmic material to lysosomes for degradation. The process preserves cellular integrity by removing damaged cellular constituents and can promote cell survival by providing substrates for energy production during hiatuses of nutrient availability. The process is also highly responsive to other forms of cellular stress. For example, DNA damage can induce autophagy and this involves up-regulation of the Damage-Regulated Autophagy Modulator-1 (DRAM-1) by the tumor suppressor p53. DRAM-1 belongs to an evolutionarily conserved protein family, which has five members in humans and we describe here the initial characterization of two members of this family, which we term DRAM-4 and DRAM-5 for DRAM-Related/Associated Member 4/5. We show that the genes encoding these proteins are not regulated by p53, but instead are induced by nutrient deprivation. Similar to other DRAM family proteins, however, DRAM-4 principally localizes to endosomes and DRAM-5 to the plasma membrane and both modulate autophagy flux when over-expressed. Deletion of DRAM-4 using CRISPR/Cas-9 also increased autophagy flux, but we found that DRAM-4 and DRAM-5 undergo compensatory regulation, such that deletion of DRAM-4 does not affect autophagy flux in the absence of DRAM-5. Similarly, deletion of DRAM-4 also promotes cell survival following growth of cells in the absence of amino acids, serum, or glucose, but this effect is also impacted by the absence of DRAM-5. In summary, DRAM-4 and DRAM-5 are nutrient-responsive members of the DRAM family that exhibit interconnected roles in the regulation of autophagy and cell survival under nutrient-deprived conditions.


Membrane Proteins , Tumor Suppressor Protein p53 , Apoptosis/physiology , Autophagy/physiology , Cell Survival/genetics , Humans , Membrane Proteins/metabolism , Nutrients , Tumor Suppressor Protein p53/genetics
7.
FEBS J ; 289(22): 7113-7127, 2022 11.
Article En | MEDLINE | ID: mdl-34783437

Communication between organelles is an essential process that helps maintain cellular homeostasis and organelle contact sites have recently emerged as crucial mediators of this communication. The emergence of a class of molecular bridges that span the inter-organelle gaps has now been shown to direct the flow of lipid traffic from one lipid bilayer to another. One of the key components of these molecular bridges is the presence of an N-terminal Chorein/VPS13 domain. This is an evolutionarily conserved domain present in multiple proteins within the endocytic and autophagy trafficking pathways. Herein, we discuss the current state-of-the-art of this class of proteins, focusing on the role of these lipid transporters in the autophagy and endocytic pathways. We discuss the recent biochemical and structural advances that have highlighted the essential role Chorein-N domain containing ATG2 proteins play in driving the formation of the autophagosome and how lipids are transported from the endoplasmic reticulum to the growing phagophore. We also consider the VPS13 proteins, their role in organelle contacts and the endocytic pathway and highlight how disease-causing mutations disrupt these contact sites. Finally, we open the door to discuss other Chorein_N domain containing proteins, for instance, UHRF1BP1/1L, their role in disease and look towards prokaryote examples of Chorein_N-like domains. Taken together, recent advances have highlighted an exciting opportunity to delve deeper into inter-organelle communication and understand how lipids are transported between membrane bilayers and how this process is disrupted in multiple diseases.


Autophagosomes , Endoplasmic Reticulum , Autophagosomes/metabolism , Endoplasmic Reticulum/metabolism , Proteins/metabolism , Biological Transport , Lipids
8.
Biol Open ; 10(12)2021 12 15.
Article En | MEDLINE | ID: mdl-34779483

The small GTPase ARF family member ARL15 gene locus is associated in population studies with increased risk of type 2 diabetes, lower adiponectin and higher fasting insulin levels. Previously, loss of ARL15 was shown to reduce insulin secretion in a human ß-cell line and loss-of-function mutations are found in some lipodystrophy patients. We set out to understand the role of ARL15 in adipogenesis and showed that endogenous ARL15 palmitoylated and localised in the Golgi of mouse liver. Adipocyte overexpression of palmitoylation-deficient ARL15 resulted in redistribution to the cytoplasm and a mild reduction in expression of some adipogenesis-related genes. Further investigation of the localisation of ARL15 during differentiation of a human white adipocyte cell line showed that ARL15 was predominantly co-localised with a marker of the cis face of Golgi at the preadipocyte stage and then translocated to other Golgi compartments after differentiation was induced. Finally, co-immunoprecipitation and mass spectrometry identified potential interacting partners of ARL15, including the ER-localised protein ARL6IP5. Together, these results suggest a palmitoylation dependent trafficking-related role of ARL15 as a regulator of adipocyte differentiation via ARL6IP5 interaction. This article has an associated First Person interview with the first author of the paper.


Diabetes Mellitus, Type 2 , Monomeric GTP-Binding Proteins , ADP-Ribosylation Factors/genetics , ADP-Ribosylation Factors/metabolism , Adipocytes/metabolism , Adipogenesis , Animals , Diabetes Mellitus, Type 2/metabolism , Golgi Apparatus/metabolism , Humans , Mice , Monomeric GTP-Binding Proteins/metabolism
9.
R Soc Open Sci ; 8(7): 202333, 2021 Jul.
Article En | MEDLINE | ID: mdl-34295519

We report here that RUFY4, a newly characterized member of the 'RUN and FYVE domain-containing' family of proteins previously associated with autophagy enhancement, is highly expressed in alveolar macrophages (AM). We show that RUFY4 interacts with mitochondria upon stimulation by microbial-associated molecular patterns of AM and dendritic cells. RUFY4 interaction with mitochondria and other organelles is dependent on a previously uncharacterized OmpH domain located immediately upstream of its C-terminal FYVE domain. Further, we demonstrate that rufy4 messenger RNA can be translated from an alternative translation initiation codon, giving rise to a N-terminally truncated form of the molecule lacking most of its RUN domain and with enhanced potential for its interaction with mitochondria. Our observations point towards a role of RUFY4 in selective mitochondria clearance in activated phagocytes.

10.
FEBS Lett ; 595(7): 864-880, 2021 04.
Article En | MEDLINE | ID: mdl-33452816

The lysosome is a cellular signalling hub at the point of convergence of endocytic and autophagic pathways, where the contents are degraded and recycled. Pleckstrin homology domain-containing family member 1 (PLEKHM1) acts as an adaptor to facilitate the fusion of endocytic and autophagic vesicles with the lysosome. However, it is unclear how PLEKHM1 function at the lysosome is controlled. Herein, we show that PLEKHM1 coprecipitates with, and is directly phosphorylated by, mTOR. Using a phosphospecific antibody against Ser432/S435 of PLEKHM1, we show that the same motif is a direct target for ERK2-mediated phosphorylation in a growth factor-dependent manner. This dual regulation of PLEKHM1 at a highly conserved region points to a convergence of both growth factor- and amino acid-sensing pathways, placing PLEKHM1 at a critical juncture of cellular metabolism.


Adaptor Proteins, Signal Transducing/genetics , Autophagy-Related Proteins/genetics , Lysosomes/genetics , Mitogen-Activated Protein Kinase 1/genetics , TOR Serine-Threonine Kinases/genetics , Autophagy/genetics , Endosomes/genetics , HeLa Cells , Humans , Phosphorylation/genetics , Protein Binding/genetics
11.
EMBO Rep ; 21(3): e48412, 2020 03 04.
Article En | MEDLINE | ID: mdl-32009292

The intracellular trafficking pathway, macroautophagy, is a recycling and disposal service that can be upregulated during periods of stress to maintain cellular homeostasis. An essential phase is the elongation and closure of the phagophore to seal and isolate unwanted cargo prior to lysosomal degradation. Human ATG2A and ATG2B proteins, through their interaction with WIPI proteins, are thought to be key players during phagophore elongation and closure, but little mechanistic detail is known about their function. We have identified a highly conserved motif driving the interaction between human ATG2 and GABARAP proteins that is in close proximity to the ATG2-WIPI4 interaction site. We show that the ATG2A-GABARAP interaction mutants are unable to form and close phagophores resulting in blocked autophagy, similar to ATG2A/ATG2B double-knockout cells. In contrast, the ATG2A-WIPI4 interaction mutant fully restored phagophore formation and autophagy flux, similar to wild-type ATG2A. Taken together, we provide new mechanistic insights into the requirements for ATG2 function at the phagophore and suggest that an ATG2-GABARAP/GABARAP-L1 interaction is essential for phagophore formation, whereas ATG2-WIPI4 interaction is dispensable.


Autophagosomes , Membrane Proteins , Apoptosis Regulatory Proteins/metabolism , Autophagosomes/metabolism , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Humans , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Protein Transport , Vesicular Transport Proteins/metabolism
13.
Essays Biochem ; 61(6): 687-697, 2017 12 12.
Article En | MEDLINE | ID: mdl-29233878

Macroautophagy ('autophagy'), is the process by which cells can form a double-membraned vesicle that encapsulates material to be degraded by the lysosome. This can include complex structures such as damaged mitochondria, peroxisomes, protein aggregates and large swathes of cytoplasm that can not be processed efficiently by other means of degradation. Recycling of amino acids and lipids through autophagy allows the cell to form intracellular pools that aid survival during periods of stress, including growth factor deprivation, amino acid starvation or a depleted oxygen supply. One of the major functions of autophagy that has emerged over the last decade is its importance as a safeguard against infection. The ability of autophagy to selectively target intracellular pathogens for destruction is now regarded as a key aspect of the innate immune response. However, pathogens have evolved mechanisms to either evade or reconfigure the autophagy pathway for their own survival. Understanding how pathogens interact with and manipulate the host autophagy pathway will hopefully provide a basis for combating infection and increase our understanding of the role and regulation of autophagy. Herein, we will discuss how the host cell can identify and target invading pathogens and how pathogens have adapted in order to evade destruction by the host cell. In particular, we will focus on interactions between the mammalian autophagy gene 8 (ATG8) proteins and the host and pathogen effector proteins.


Autophagy/physiology , Host-Pathogen Interactions/physiology , Animals , Autophagy/genetics , Autophagy-Related Protein 8 Family/genetics , Autophagy-Related Protein 8 Family/metabolism , Host-Pathogen Interactions/genetics , Humans , Immunity, Innate/genetics , Immunity, Innate/physiology
14.
EMBO Rep ; 18(8): 1382-1396, 2017 08.
Article En | MEDLINE | ID: mdl-28655748

Through the canonical LC3 interaction motif (LIR), [W/F/Y]-X1-X2-[I/L/V], protein complexes are recruited to autophagosomes to perform their functions as either autophagy adaptors or receptors. How these adaptors/receptors selectively interact with either LC3 or GABARAP families remains unclear. Herein, we determine the range of selectivity of 30 known core LIR motifs towards individual LC3s and GABARAPs. From these, we define a G ABARAP I nteraction M otif (GIM) sequence ([W/F]-[V/I]-X2-V) that the adaptor protein PLEKHM1 tightly conforms to. Using biophysical and structural approaches, we show that the PLEKHM1-LIR is indeed 11-fold more specific for GABARAP than LC3B. Selective mutation of the X1 and X2 positions either completely abolished the interaction with all LC3 and GABARAPs or increased PLEKHM1-GIM selectivity 20-fold towards LC3B. Finally, we show that conversion of p62/SQSTM1, FUNDC1 and FIP200 LIRs into our newly defined GIM, by introducing two valine residues, enhances their interaction with endogenous GABARAP over LC3B. The identification of a GABARAP-specific interaction motif will aid the identification and characterization of the expanding array of autophagy receptor and adaptor proteins and their in vivo functions.


Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins , Autophagy , Autophagy-Related Proteins , HEK293 Cells , HeLa Cells , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Microtubule-Associated Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs
15.
J Biol Chem ; 291(17): 9025-41, 2016 Apr 22.
Article En | MEDLINE | ID: mdl-26929408

The covalent conjugation of ubiquitin-fold modifier 1 (UFM1) to proteins generates a signal that regulates transcription, response to cell stress, and differentiation. Ufmylation is initiated by ubiquitin-like modifier activating enzyme 5 (UBA5), which activates and transfers UFM1 to ubiquitin-fold modifier-conjugating enzyme 1 (UFC1). The details of the interaction between UFM1 and UBA5 required for UFM1 activation and its downstream transfer are however unclear. In this study, we described and characterized a combined linear LC3-interacting region/UFM1-interacting motif (LIR/UFIM) within the C terminus of UBA5. This single motif ensures that UBA5 binds both UFM1 and light chain 3/γ-aminobutyric acid receptor-associated proteins (LC3/GABARAP), two ubiquitin (Ub)-like proteins. We demonstrated that LIR/UFIM is required for the full biological activity of UBA5 and for the effective transfer of UFM1 onto UFC1 and a downstream protein substrate both in vitro and in cells. Taken together, our study provides important structural and functional insights into the interaction between UBA5 and Ub-like modifiers, improving the understanding of the biology of the ufmylation pathway.


Adaptor Proteins, Signal Transducing/metabolism , Microtubule-Associated Proteins/metabolism , Protein Processing, Post-Translational/physiology , Proteins/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs , Apoptosis Regulatory Proteins , HEK293 Cells , Humans , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Protein Structure, Secondary , Proteins/chemistry , Proteins/genetics , Structure-Activity Relationship , Ubiquitin-Activating Enzymes/chemistry , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/chemistry , Ubiquitin-Conjugating Enzymes/genetics
16.
FEBS Lett ; 589(20 Pt B): 3182-8, 2015 Oct 07.
Article En | MEDLINE | ID: mdl-26348397

By transporting regulatory RNAs like microRNAs, extracellular vesicles provide a novel layer of intercellular gene regulation. However, the underlying secretory pathways and the mechanisms of cargo selection are poorly understood. Rab GTPases are central coordinators of membrane trafficking with distinct members of this family being responsible for specific transport pathways. Here we identified a vesicular export mechanism for miR-143, induced by the shear stress responsive transcription factor KLF2, and demonstrate its dependency on Rab7a/Rab27b in endothelial cells.


Extracellular Vesicles/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , MicroRNAs/metabolism , rab GTP-Binding Proteins/metabolism , Blotting, Western , Cells, Cultured , Extracellular Vesicles/genetics , Gene Expression , HeLa Cells , Humans , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , MicroRNAs/genetics , Microscopy, Confocal , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Stress, Mechanical , rab GTP-Binding Proteins/genetics , rab7 GTP-Binding Proteins
17.
Autophagy ; 11(4): 720-2, 2015 Apr 03.
Article En | MEDLINE | ID: mdl-25905573

The endosomal system and autophagy are 2 intertwined pathways that share a number of common protein factors as well as a final destination, the lysosome. Identification of adaptor platforms that can link both pathways are of particular importance, as they serve as common nodes that can coordinate the different trafficking arms of the endolysosomal system. Using a mass spectrometry approach to identify interaction partners of active (GTP-bound) RAB7, the late endosome/lysosome GTPase, and yeast 2-hybrid screening to identify LC3/GABARAP interaction partners we discovered the multivalent adaptor protein PLEKHM1. We discovered a highly conserved LC3-interaction region (LIR) between 2 PH domains of PLEKHM1 that mediated direct binding to all LC3/GABARAP family members. Subsequent mass spectrometry analysis of PLEKHM1 precipitated from cells revealed the HOPS (homotypic fusion and protein sorting) complex as a prominent interaction partner. Functionally, depletion of PLEKHM1, HOPS, or RAB7 results in decreased autophagosome-lysosome fusion. In Plekhm1 knockout (KO) mouse embryonic fibroblasts (MEFs) we observed increased lipidated LC3B, decreased colocalization between LC3B and LAMP1 under amino acid starvation conditions and decreased autolysosome formation. Finally, PLEKHM1 binding to LC3-positive autophagosomes was also essential for selective autophagy pathways, as shown by clearance of puromycin-aggregates, in a PLEKHM1-LIR-dependent manner. Overall, we have identified PLEKHM1 as an endolysosomal adaptor platform that acts as a central hub to integrate endocytic and autophagic pathways at the lysosome.


Adaptor Proteins, Signal Transducing/metabolism , Autophagy/physiology , Endosomes/metabolism , Lysosomes/metabolism , Membrane Glycoproteins/metabolism , Vesicular Transport Proteins/metabolism , Adaptation, Physiological , Animals , Autophagy-Related Proteins , HeLa Cells , Humans , Membrane Fusion/physiology , Mice , Phagosomes/metabolism
18.
Mol Cell ; 57(1): 39-54, 2015 Jan 08.
Article En | MEDLINE | ID: mdl-25498145

The lysosome is the final destination for degradation of endocytic cargo, plasma membrane constituents, and intracellular components sequestered by macroautophagy. Fusion of endosomes and autophagosomes with the lysosome depends on the GTPase Rab7 and the homotypic fusion and protein sorting (HOPS) complex, but adaptor proteins that link endocytic and autophagy pathways with lysosomes are poorly characterized. Herein, we show that Pleckstrin homology domain containing protein family member 1 (PLEKHM1) directly interacts with HOPS complex and contains a LC3-interacting region (LIR) that mediates its binding to autophagosomal membranes. Depletion of PLEKHM1 blocks lysosomal degradation of endocytic (EGFR) cargo and enhances presentation of MHC class I molecules. Moreover, genetic loss of PLEKHM1 impedes autophagy flux upon mTOR inhibition and PLEKHM1 regulates clearance of protein aggregates in an autophagy- and LIR-dependent manner. PLEKHM1 is thus a multivalent endocytic adaptor involved in the lysosome fusion events controlling selective and nonselective autophagy pathways.


Adaptor Proteins, Signal Transducing/genetics , Lysosomes/metabolism , Membrane Fusion/genetics , Membrane Glycoproteins/genetics , Microtubule-Associated Proteins/genetics , Phagosomes/metabolism , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Apoptosis Regulatory Proteins , Autophagy , Autophagy-Related Proteins , Endosomes/metabolism , Gene Expression Regulation , HeLa Cells , Humans , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Microtubule-Associated Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Sequence Alignment , Signal Transduction , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
19.
Cell Host Microbe ; 17(1): 58-71, 2015 Jan 14.
Article En | MEDLINE | ID: mdl-25500191

The host endolysosomal compartment is often manipulated by intracellular bacterial pathogens. Salmonella (Salmonella enterica serovar Typhimurium) secrete numerous effector proteins, including SifA, through a specialized type III secretion system to hijack the host endosomal system and generate the Salmonella-containing vacuole (SCV). To form this replicative niche, Salmonella targets the Rab7 GTPase to recruit host membranes through largely unknown mechanisms. We show that Pleckstrin homology domain-containing protein family member 1 (PLEKHM1), a lysosomal adaptor, is targeted by Salmonella through direct interaction with SifA. By binding the PLEKHM1 PH2 domain, Salmonella utilize a complex containing PLEKHM1, Rab7, and the HOPS tethering complex to mobilize phagolysosomal membranes to the SCV. Depletion of PLEKHM1 causes a profound defect in SCV morphology with multiple bacteria accumulating in enlarged structures and significantly dampens Salmonella proliferation in multiple cell types and mice. Thus, PLEKHM1 provides a critical interface between pathogenic infection and the host endolysosomal system.


Adaptor Proteins, Signal Transducing/metabolism , Bacterial Proteins/metabolism , Glycoproteins/metabolism , Host-Pathogen Interactions , Membrane Glycoproteins/metabolism , Salmonella typhimurium/growth & development , Vacuoles/microbiology , Animals , Autophagy-Related Proteins , Carrier Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Membrane Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Mapping , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
20.
Dev Cell ; 31(6): 675-6, 2014 Dec 22.
Article En | MEDLINE | ID: mdl-25535915

Autophagy removes protein aggregates, damaged organelles, and intracellular pathogens from cells and helps to recycle lipids and protein building blocks. However, regulatory mechanisms of the initial, rapid response are largely unknown. In this issue of Developmental Cell, Antonioli et al. (2014) provide mechanistic insights into autophagy induction and termination by Cullin E3 ligases.


Adaptor Proteins, Signal Transducing/metabolism , Autophagy , Cullin Proteins/metabolism , Gene Expression Regulation, Developmental , Ubiquitin-Protein Ligases/metabolism , Animals , Humans
...